	7	01		1150105	or cop	per co	induction	<i>ns</i> , narc	i uraw	n, 77	, , o c oi		-									
Size of Conductor		Num-	Diameter of	Outside		Weight	Approx. Current	Geometric Mean Radius	ra Resistance (Ohms per Conductor per Mile)							x _a Inductive Reactance (ohms per conductor		x ['] a Shunt Capacitive Reactance (megohms per conductor				
Circular	A.W.G. or	G. ber of S. Strands	Individual Strands	eter	Breaking Strength	per	Carrying Capacity*	at 60 Hz	25°C (77°F) dc 25 Hz 50 Hz 60 Hz				50°C (122°F) dc 25 Hz 50 Hz 60 Hz			per mile at 1 ft spacing) 25 Hz 50 Hz 60 Hz			per mile at 1 ft spacing) 25 Hz 50 Hz 60 Hz			
Mils	B.&S.	Strands 37	(inches) 0.1644	(inches)	(pounds) 43830	mile) 16 300	(amps) 1 300	(feet) 0.0368	dc 0.0585	0.0594	0.0620	0.0634	ac 0.0640	0.0648	0.0672	0.0685	0.1666	0.333	0.400	0.216	0.1081	0.0901
1 000 000 900 000 800 000 750 000	· · · · · · ·	37 37 37 37 37	0.1560 0.1470 0.1424	1.151 1.092 1.029 0.997	43 830 39 510 35 120 33 400	14 670 13 040 12 230	1 220 1 1 30 1 090	0.0368 0.0349 0.0329 0.0319	0.0650 0.0731 0.0780	0.0658 0.0739 0.0787	0.0682 0.0760 0.0807	0.0695 0.0772 0.0818	0.0711 0.0800 0.0853	0.0848 0.0718 0.0806 0.0859	0.0740 0.0826 0.0878	0.0752 0.0837 0.0888	0.1693 0.1722 0.1739	0.339 0.344 0.348	0.400 0.406 0.413 0.417	0.220 0.224 0.226	0.1100 0.1121 0.1132	0.0916 0.0934 0.0943
700 000 600 000 500 000 500 000		37 37 37 19	0.1375 0.1273 0.1162 0.1622	0.963 0.891 0.814 0.811	31 170 27 020 22 510 21 590	11 410 9 781 8 151 8 151	1 040 940 840 840	0.0308 0.0285 0.0260 0.0256	0.0836 0.0975 0.1170 0.1170	0.0842 0.0981 0.1175 0.1175	0.0861 0.0997 0.1188 0.1188	0.0871 0.1006 0.1196 0.1196	0.0914 0.1066 0.1280 0.1280	0.0920 0.1071 0.1283 0.1283	0.0937 0.1086 0.1296 0.1296	0.0947 0.1095 0.1303 0.1303	0.1759 0.1799 0.1845 0.1853	0.352 0.360 0.369 0.371	0.422 0.432 0.443 0.445	0.229 0.235 0.241 0.241	0.1145 0.1173 0.1205 0.1206	0.0954 0.0977 0.1004 0.1005
450 000 400 000 350 000 350 000		19 19 19 12	0.1539 0.1451 0.1357 0.1708	0.770 0.726 0.679 0.710	19 750 17 560 15 590 15 140	7 336 6 521 5 706 5 706	780 730 670 670	0.0243 0.0229 0.0214 0.0225	0.1300 0.1462 0.1671 0.1671	0.1304 0.1466 0.1675 0.1675	0.1316 0.1477 0.1684 0.1684	0.1323 0.1484 0.1690 0.1690	0.1422 0.1600 0.1828 0.1828	0.1426 0.1603 0.1831 0.1831	0.1437 0.1613 0.1840 0.1840	0.1443 0.1619 0.1845 0.1845	0.1879 0.1909 0.1943 0.1918	0.376 0.382 0.389 0.384	0.451 0.458 0.466 0.460	0.245 0.249 0.254 0.251	0.1224 0.1245 0.1269 0.1253	0.1020 0.1038 0.1058 0.1044
300 000 300 000 250 000 250 000		19 12 19 12	0.1257 0.1581 0.1147 0.1443	0.629 0.657 0.574 0.600	13510 13170 11360 11130	4 891 4 891 4 076 4 076	610 610 540 540	0.01987 0.0208 0.01813 0.01902	0.1950 0.1950 0.234 0.234	0.1953 0.1953 0.234 0.234	0.1961 0.1961 0.235 0.235	0.1966 0.1966 0.235 0.235	0.213 0.213 0.256 0.256	0.214 0.214 0.256 0.256	0.214 0.214 0.257 0.257	0.215 0.215 0.257 0.257	0.1982 0.1957 0.203 0.200	0.396 0.392 0.406 0.401	0.476 0.470 0.487 0.481	0.259 0.256 0.266 0.263	0.1296 0.1281 0.1329 0.1313	0.1080 0.1068 0.1108 0.1094
211 600 211 600 211 600 167 800	4/0 4/0 4/0 3/0	19 12 7 12	0.1055 0.1328 0.1739 0.1183	0.528 0.552 0.522 0.492	9617 9483 9154 7556	3 450 3 450 3 450 2 736	480 490 480 420	0.01668 0.01750 0.01579 0.01559	0.276 0.276 0.276 0.349	0.277 0.277 0.277 0.349	0.277 0.277 0.277 0.349	0.278 0.278 0.278 0.350	0.302 0.302 0.302 0.381	0.303 0.303 0.303 0.381	0.303 0.303 0.303 0.382	0.303 0.303 0.303 0.382	0.207 0.205 0.210 0.210	0.414 0.409 0.420 0.421	0.497 0.491 0.503 0.505	0.272 0.269 0.273 0.277	0.1359 0.1343 0.1363 0.1384	0.1132 0.1119 0.1136 0.1153
167 800 133 100 105 500 83 690	3/0 2/0 1/0 1	7 7 7 7	0.1548 0.1379 0.1228 0.1093	0 464 0.414 0.368 0.328	7 366 5 926 4 752 3 804	2 736 2 170 1 720 1 364	420 360 310 270	0.01404 0.01252 0.01113 0.00992	0.349 0.440 0.555 0.699	0.349 0.440 0.555 0.699	0.349 0.440 0.555 0.699	0.350 0.440 0.555 0.699	0.381 0.481 0.606 0.765	0.381 0.481 0.607	0.382 0.481 0.607	0.382 0.481 0.607	0.216 0.222 0.227 0.233	0.431 0.443 0.455 0.467	0.518 0.532 0.546 0.560	0.281 0.289 0.298 0.306	0.1405 0.1445 0.1488 0.1528	0.1171 0.1205 0.1240 0.1274
83 690 66 370 66 370 66 370	1 2 2 2	3 7 3 1	0.1670 0.0974 0.1487	0.360 0.292 0.320 0.258	3 620 3 045 2 913 3 003	1 351 1 082 1 071 1 061	270 230 240 220	0.01016 0.00883 0.00903 0.00836	0.692 0.881 0.873 0.864	0.692 0.882	0.692 0.882	0.692 0.882	0.757 0.964 0.955 0.945				0.232 0.239 0.238 0.242	0.464 0.478 0.476 0.484	0.557 0.574 0.571 0.581	0.299 0.314 0.307 0.323	0.1495 0.1570 0.1537 0.1614	0.1246 0.1308 0.1281 0.1345
52 630 52 630 52 630 41 740	3 3 3 4	7 3 1 3	0.0867 0.1325 0.1180	0 260 0.285 0.229 0.254	2 433 2 359 2 439 1 879	858 850 841 674	200 200 190 180	0.00787 0.00805 0.00745 0.00717	1.112 1.101 1.090 1.388		Same as do		1.216 1.204 1.192 1.518		Same as do		0.245 0.244 0.248 0.250	0.490 0.488 0.496 0.499	0.588 0.585 0.595 0.599	0.322 0.316 0.331 0.324	0.1611 0.1578 0.1656 0.1619	0.1343 0.1315 0.1380 0.1349
41 740 33 100 33 100 26 250	4 5 5 6	1 3 1 3	0.1050	0.204 0.226 0.1819 0.201	1 970 1 505 1 591 1 205	667 534 529 424	170 150 140 130	0.00663 0.00638 0.00590 0.00568	1.374 1.750 1.733 2.21				1.503 1.914 1.895 2.41				0.254 0.256 0.260 0.262	0.507 0.511 0.519 0.523	0.609 0.613 0.623 0.628	0.339 0.332 0.348 0.341	0.1697 0.1661 0.1738 0.1703	0.1415 0.1384 0.1449 0.1419
26 250 20 820 16 510	6 7 8	1 1 1	·····	0.1620 0.1443 0.1285	1 280 1 030 826	420 333 264	120 110 90	0.00526 0.00468 0.00417	2.18 2.75 3.47				2.39 3.01 3.80				0.265 0.271 0.277	0.531 0.542 0.554	0.637 0.651 0.665	0.356 0.364 0.372	0.1779 0.1821 0.1862	0.1483 0.1517 0.1552

TABLE A.3 Characteristics of copper conductors, hard drawn, 97.3% conductivity

*For conductor at 75°C, air at 25°C, wind 1.4 miles per hour (2 ft/sec), frequency = 60 Hz.